

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR JUNIO 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: FÍSICA Y QUÍMICA

SOLUCIONES

Respuesta1) Primero calculamos la aceleración de frenado y luego la distancia recorrida.

$$v_0 = 120 \frac{km}{h} \cdot \frac{1000 \, m}{1 \, km} \cdot \frac{1 \, h}{3600 \, s} = 33.3 \, \frac{m}{s} \; ; \; v = 0 \quad ; \; t = 12 \, s \; \rightarrow \; a = \frac{v - v_0}{\Delta t} = \frac{0 - 38/3 \, m/s}{12 \, s} \approx -2.8 \, \frac{m}{s} / s^2 = \frac{12.5 \, m/s}{12 \, s} \approx$$

Y ahora
$$\Delta e = v_0 t + \frac{1}{2} a t^2 = 33.3 \frac{m}{s} \cdot 12s + \frac{1}{2} \left(-2.8 \frac{m}{s^2} \right) \cdot (12 s)^2 = 198 m$$

Respuesta 2) Tramo I:
$$a = \frac{v - v_0}{v - c_0} = \frac{(12 - 0)^m/s}{(20 - 0)s} = 0.6 \frac{m}{s^2}$$
 $F_{RES} = ma = 1200 kg \cdot 0.6 \frac{m}{s^2} = 720 N$

Tramo II:
$$\alpha = \frac{v - v_0}{c - c_0} = \frac{(20 - 12)^m / s}{(50 - 20)s} \approx 0.27 \frac{m}{s^2}$$
 $F_{RES} = ma = 1200 kg \cdot (0.27) \frac{m}{s^2} = 324 N$

Tramo III:
$$\alpha = 0$$
 $F_{RES} = 0$

Respuesta 3) La ddp en es
$$V_{AB} = IR = 3A \cdot 5\Omega = 15V$$

Si conectamos otra resistencia (R) en paralelo la resistencia equivalente es $R_{eq} = 5 + R$ siendo la ddp la misma

(15 V) y la nueva intensidad 0,5 A.

Se cumplirá que $V_{AB} = I(5+R) \rightarrow 15 = 0.5 \cdot (5+R)$ de donde calculamos R $\rightarrow R = 25\Omega$

CRITERIOS DE EVALUACIÓN Y CALIFICACIÓN

⁻ Todas las preguntas puntúan igual.

⁻ La calificación de esta Parte o Apartado se adaptará a lo establecido en la RESOLUCIÓN de 26 de marzo de 2013, de la Dirección General de Formación Profesional y Enseñanzas de Régimen Especial, por la que se convocan pruebas de acceso a los ciclos formativos de Formación Profesional (DOCV 05-04-2013).

Respuesta 4) a) Z = 18 y A = 38 ; $1s^2 2s^2 2p^6 3s^2 3p^6$; A la vista de su configuración electrónica se

trata de un gas noble (Argón)

b)

<i>Fórmula</i>	Nombre
CH ₃ -CH ₂ -CH ₃	propano
CH ₂ =CH ₂	eteno
СН3-СНОН-СН3	2-propanol
CH ₃ –CH ₂ -O-CH ₂ –CH ₃	dietiléter
CH ₃ -CH ₂ -CH ₂ -CHO	butanal
CH ₃ -CO-CH ₂ -CH ₃ -CH ₂ -CH ₃	2-hexanona
СН₃– СН₂–СООН	ácido propanoico
CH3-CH2-CH2-NH2	propilamina

CRITERIOS DE EVALUACIÓN Y CALIFICACIÓN

⁻ Todas las preguntas puntúan igual.

⁻ La calificación de esta Parte o Apartado se adaptará a lo establecido en la RESOLUCIÓN de 26 de marzo de 2013, de la Dirección General de Formación Profesional y Enseñanzas de Régimen Especial, por la que se convocan pruebas de acceso a los ciclos formativos de Formación Profesional (DOCV 05-04-2013).

Respuesta 5) $P_1 = 2 \alpha t m$

$$\frac{P_1 \cdot V_1}{V_1 = 30 L}; \qquad \frac{P_2 \cdot V_2}{T_2} \quad \Rightarrow \quad \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} = V_2 \quad \Rightarrow V_2 = \frac{2atm \cdot 30L \cdot 313 K}{1atm \cdot 298 K} \approx 63 L$$

$$T_1 = 25$$
°C = 298 K $P_2 = 1$ atm $V_2 = 1$? $T_2 = 40$ °C = 313 K

Respuesta 6) a) $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$. Como las combustiones, se trata de una reacción exotérmica

b)
$$Mr(C_3H_8)=12\cdot 3 + 8\cdot 1 = 44 u$$

$$Mr(H_2O)=2\cdot 1 + 16 = 18 u$$

$$_{220\,\mathrm{g\,de}\,C_{3}H_{8}}\cdot\frac{_{1}\,mol\,c_{3}H_{8}}{_{44g}\,c_{2}H_{2}}\cdot\frac{_{4}\,moles\,H_{2}\,o}{_{1}\,mol\,c_{3}H_{2}}\cdot\frac{_{18\,g\,H_{2}\,o}}{_{1}\,mol\,H_{2}\,o}=3\,60\,g\,H_{2}O$$

CRITERIOS DE EVALUACIÓN Y CALIFICACIÓN

⁻ Todas las preguntas puntúan igual.

⁻ La calificación de esta Parte o Apartado se adaptará a lo establecido en la RESOLUCIÓN de 26 de marzo de 2013, de la Dirección General de Formación Profesional y Enseñanzas de Régimen Especial, por la que se convocan pruebas de acceso a los ciclos formativos de Formación Profesional (DOCV 05-04-2013).